Kininmonth drew attention to the potential for the adoption of new processes at Panton, saying: “We have been progressing discussions with potential technology partners to assess a low-capital downstream integration option at Panton.”
“Downstream integration enables the production of high-margin metals products while also significantly decreasing the emissions profile associated with those products, thereby differentiating Panton from the majority of South African and Russia producers, which use coal-fired power and generate other emissions such as sulphur dioxide.”
A report claims that hydrometallurgical processing has several advantages over smelting, including 65%-80% cheaper capital costs and 35%-50% lower operational costs. It would also reduce power usage by 50%-85% and carbon emissions by up to 80%.
According to studies, rare earth hydrometallurgy operations create a large quantity of wastewater, waste solids and off-gas. Several varieties of wastewater, including acidic, alkaline, ammonium and fluorine wastewater, are generated due to such operations. This included radioactive materials, heavy metal ions and other chemicals, and cutting down on these by-products would be a significant step towards better ESG compliance.
On a broader scale, Australia has pledged to help fight climate change by reducing gas emissions. The country aims to achieve net-zero emissions by 2050 by promoting net-zero mining practices, but companies continue to expand their drilling and exploration, presenting a challenge for Australian mining as a whole.
Ensuring sustainable operations, and reducing emissions, will depend on the technological changes in Australia’s mining industry, possibly accelerating the reuse and recycling of critical minerals that use modern drilling technologies. The minerals industry will have to use technology to improve operational efficiencies, reduce consumption and produce more with less and decrease waste production.