With the development of Li-ion batteries, demand for graphite has been increasing. Both the US and the European Union have listed it as a strategic mineral, solidifying its importance.
Graphite is most commonly used in the manufacture of steel due to its ability to remain rigid in temperatures up to 3,600°C, but it has been used in hundreds of industries for thousands of years. It is highly conductive of both heat and electricity.
Graphite is the soft form of pure carbon, and is generally found in either flakes or in mass in the natural environment. It can be synthetically constructed, but due to the high cost of this process, it is more commonly mined.
The commodity is mined around the world, including in Brazil, India, and Madagascar. China is the biggest producer of graphite, but recent reductions due to the country’s efforts to reduce pollution and protect the environment could change this.
Currently, the largest use of graphite is in the creation of steel; in 2015 only 5% of graphite was used in batteries. This, however, this seems set to change as countries, in particular China, move towards less carbon-intensive economies.
Efforts to switch to renewable technologies to reduce pollution and slow climate change have been hampered by the intermittency of technologies. It is often bemoaned that solar is great when the sun shines and wind turbines are brilliant when the wind blows, but neither can produce baseload power.
One effort to bypass this complaint is to develop storage technologies to balance production and demand. Currently, this is predominantly focused on Li-ion battery cells in a host of sizes. This ranges from vast batteries such as Tesla’s giant Powerpack in Australia, to those used in electric vehicles, but they all have one thing in common: they require large amounts of graphite.
Demand has already increased exponentially, and led to predictions that the market for graphite could increase to 250,000 tonnes by 2020. As the world turns to batteries, mining operations will have to expand to meet demand; currently the biggest graphite mine in North America produces just 25,000 tonnes annually.
While synthetic graphite can be altered for use in battery technologies, the large amounts of coal required to produce it dramatically reduces its green credentials. This has led analysts to predict a rise in interest in mining graphite, instead of synthesising the commodity.